B.Sc. B.Ed SEM-I Examination: 2020

Course-CC1

Subject: Mathematics (Elementary Algebra and Calculus)

	Time: 2 Hours F.M. 50	
Answe	er any <i>ten</i> questions $(5 \times 10 = 1)$	50)
1.	State De-Moivre's theorem for positive integer indices. Using this theorem, find	,
	value of $\frac{3}{(2+i)^3}$ 2 +	
2.	If α , β , γ be the roots of the equation $x^3 + x + 1 = 0$, then prove that $(\alpha^2 + 1)(\beta^2 + (\gamma^2 + 1)) = 1$.	- 1)
3.	If a, b, c be positive and $a+b+c=1$, then show that, $(\frac{1}{a}-1)(\frac{1}{b}-1)(\frac{1}{c}-1)\geq 8$	3. 5
4.	Solve the equation: $U_{n+2} - 7U_{n+1} - 8U_n = n^2 \cdot 2^n$	
5.	Define Hermitian and Skew-Hermitian matrices. Show that any square matrix A	
	con he symitten as the course C. II.	+ 3
6.	If possible, solve the system of equations:	
	2x + y - 3z = 8	
	x - y - 2z = -2	
	x + 2y - z = 10	5
7.	State $\mathcal{E} - \delta$ definition of limit of a function. Then show that $\lim_{x\to 0} f(x) = 4$	
	where, $f(x) = \frac{x^2 - 4}{x - 2}, x \neq 2$	+ 3
8.	Examine the nature of discontinuity of $f(x) = [x] + [1 - x]$ at $x = 0$	5
9.	A function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x + x-1 + x-2 $. $x \in$	$\mathbb{R}.$
	Find $f'(x)$ and specify the domain.	5
10.	If $y = \frac{1}{x^2 + a^2}$, prove that $y_n = \frac{(-1)^n n!}{a^{n+2}} sin^{n+1} \theta sin(n+1)\theta$ where $cot\theta = \frac{x}{a}$	5
11.	Find the value of $\lim_{x\to 0} \frac{\tan x - x}{x^2 \tan x}$	5
12.	If $I_{m,n} = \int_0^{\frac{\pi}{2}} sin^m x cos nx dx$ then show that	
	$(m+n)I_{m,n} = \sin\frac{n\pi}{2} - mj_{m-1,n-1}$	
	Where, $j_{m,n} = \int_0^{\frac{\pi}{2}} \sin^m x \sin nx dx$ (m\ge 1)	5